Computing Crunch Power And The Simulation Hypothesis

 It has been postulated that our reality might in fact be a virtual reality. That is, some unknown agency, "The Others", have created a computer simulation and we 'exist' as part of that overall simulation. One objection to that scenario is that in order to exactly simulate our Cosmos (including ourselves) we would require a computer the size of our Cosmos with the sort of crunch power that could duplicate our Cosmos on a one-to-one basis, which is absurd. The flaw is that realistic simulations can be made without resorting to a one-on-one correlation.


WHY ARE WE A SIMULATION?


Here's another thought on the Simulation Hypothesis which postulates that we 'exist' as a configuration of bits and bytes, not as quarks and electrons. We are virtual reality - simulated beings. Here is the "why" of things.


Really real worlds (which we presume ours to be) are simulating virtual reality worlds - lots and lots and lots of them - so the ratio of virtual reality worlds to really real worlds is lots, and lots and lots to one. That's the main reason why we shouldn't presume that ours is a really real world! If one postulates "The Other", where "The Other" might be technologically advanced extraterrestrials creating their version of video games, or even the human species, the real human species from what we'd call the far future doing ancestor simulations, the odds are our really real world is actually a really real virtual reality world inhabited by simulated earthlings (like us).


Now an interesting aside is that we tend to assume that "The Other" are biological entities (human or extraterrestrial) who like to play "what if" games using computer hardware and software. Of course "The Other" could actually be highly advanced A.I. (artificial intelligence) with consciousness playing "what if" scenarios.


SIMULATIONS AND THE NEED FOR COMPUTER CRUNCH POWER


Anyway, each individual simulated world requires just so many units of crunch power. We humans have thousands of video games each ONE requiring a certain amount of computing crunch power. There may be in total is an awful lot of computing crunch power going on when it comes to these video games collectively, but what counts is the number of video games divided by the number of computers playing them. Not all video games are being played on just one computer at the same time. If you have a ten-fold increase in video games, and a ten-fold increase in the number of computers they are played on, there's no need for ever increasing crunch power unless the nature of the game itself demands it. Video games today probably demand more crunch power than video games from twenty years ago, but we've to date met that requirement.


Now if a really real world created thousands of video games, and the characters in each and every one of those video games created thousands of video games and the characters in those video games created thousands of their video games, okay, then ever increasing crunch power within that original really real world is in demand. That's not to say that that ever increasing need for crunch can't be met however. But that's NOT the general scenario that's being advocated. For the immediate here and now, let's just stick with one really real world creating thousands of uniquely individual simulated virtual reality worlds (i.e. - video games). Ockham's Razor suggests that one not overly complicate things unnecessarily.


That said, a variation on Murphy's Law might be: The ways and means to use computing crunch power expands to meet the crunch power available and is readily on tap.


Sceptics seem to be assuming here that if you can simulate something, then ultimately you will pour more and more and more and more crunch power (as it becomes available) into that which you are simulating. I fail to see how that follows of necessity. If you want to create and sell a video game, if you put X crunch power into it you will get Y returns in sales, etc. If you put 10X crunch power into it, you might only get 2Y returns in sales. There is a counterbalance - the law of diminishing returns.


Video gamers may always want more, but when the crunch power of the computer and the software it can carry and process exceeds the crunch power of the human gamer (chess programs / software anyone), then there's no point in wanting even more. A human gamer might be able to photon-torpedo a Klingon Battlecruiser going at One-Quarter Impulse Power, but a massive fleet of them at Warp Ten might be a different starship scenario entirely. Gamers play to win, not to be universally frustrated and always out performed by their game.


It makes no economic sense at all to buy and get a monthly bill for 1000 computer crunch units and only need and use 10.


But the bottom line is that computer crunch power is available for simulation exercises as we have done. Anything else is just a matter of degree. If us; them; them of course being "The Other" or The Simulators.


LIMITS TO GROWTH


Are there limits to crunch power? Well before I get to agreeing to that, which I ultimately do, are opponents assuming that crunch power won't take quantum leaps, perhaps even undreamed of quantum leaps in the generations to come? I assume for starters that we in the early 21st Century don't have enough computing power to simulate the Cosmos at a one-to-one scale. Would quantum computers alter this analysis? I'm no expert in quantum computers - I've just heard the hype. Still, are available crunch power sceptics' game to predict what might or might not be possible in a 100 years; in a 1000 years? Still, the ability to increase computing crunch power could go on for a while yet. Isn't the next innovation going from a 2-D chip to a 3-D chip?


Still, Moore's Law (computing crunch power doubles every 18 to 24 months) can't go on indefinitely and I wasn't aware that I.T. people have postulated that Moore's Law could go on "forever". That's a bit of a stretch.


Okay, even if we accept that fact that we're all greedy and want more, more, more and even more crunch power - and ditto by implication our simulators - then there will ultimately be limits. There might be engineering limits like dealing with heat production. There may be resolution limits. There may be technological limits as in maybe quantum computing isn't really feasible or even possible. There will be economic limits as in you may want to upgrade your PC but your budget doesn't allow for it; you ask for a new research grant to buy a new supercomputer and get turned down, and so on.


Perhaps our highly advanced simulators have hit the ultimate computer crunch power wall and that's all she wrote; she could write no more. There's probably a 'speed of light' barrier equivalent limiting computer crunch power. Then too, our simulators have competing priorities and have to divide the economic / research pie.


I've never read or heard about any argument that the Simulation Hypothesis assumes ever and ever and ever increasing crunch power. It assumes that the computer / software programmer has sufficient crunch power to achieve their objective, no more, no less.


In other words, the computer / software simulator is going to be as economical with the bits and bytes as is as possible to achieve that's still compatible with the degree of realism desired. That makes sense.


The bottom line is that our simulated reality just has to be good enough to fool us. In fact, if we 'exist' as a simulation, then from the get-go you have experienced nothing but a simulated 'reality' and thus you wouldn't be able to recognize really real reality even if it clobbered you over the head!


THE ONE-TO-ONE FALLACY


There's one obvious objection to those who propose that there's not enough computer power to create 100% realistic simulations. Here realistic means a one-to-one relationship. But such a degree of realism isn't necessary and we might not even not even be able to conceive of our simulator's really real reality since we've known no other reality other than the one we exist in right now. We have no other reality to compare ours to other than other realities (i.e. - simulations of our reality) that we create, which of course includes our dreams and say films.


The degree of realism now possible with CGI is in fact equal to the actual degree of realism we experience in our everyday world; with everyday experiences. I'm sure you must have seen over the last five years movies that had loads of CGI embedded in them, and even while knowing that what you were seeing was CGI, you couldn't actually detect apart the simulation (say the dinosaurs in "Jurassic World") from what was actually real (like the actors). Still, you have alienware r8  little trouble telling the difference between film action, even 3-D film action, and live action.


Maybe in this reality you can tell the difference between a film and live action, but what if that live action was as simulated as the film? If you have spent your entire existence as live action virtual reality (without knowing it of course) and now and again watching virtual reality film which you can distinguish from your live action virtual reality, then you can have absolutely no idea of the nature of the really real reality where our simulators reside and of the simulators themselves (although it might be a best guess to speculate that there will be a lot of similarities) and how much crunch power they have devoted to their hobby / gaming / research (we could be a grand "what if" sociological experiment). Maybe their Moore's Law gives them in theory 1000 units of crunch power, but they only need or can afford 100 units. Just because you might be able to afford a fleet of sports cars, several yachts, a 28 bedroom mansion, a half-dozen holiday homes and a half-yearly round-the-world holiday and can buy all of the women you might want doesn't of necessity mean you will spend that money.


Comments

Popular posts from this blog

The Evolution of Technology - The History of Computers

How To Wisely Buy A New Computer

Breaking the Computer Buying Cycle